Some Aspects of Estimators for Variance of Normally Distributed Data

نویسندگان

  • N. Hemachandra
  • Puja Sahu
چکیده

Normally distributed data arises in various contexts and often one is interested in estimating its variance. The authors limit themselves in this chapter to the class of estimators that are (positive) multiples of sample variances. Two important qualities of estimators are bias and variance, which respectively capture the estimator’s accuracy and precision. Apart from the two classical estimators for variance, they also consider the one that minimizes the Mean Square Error (MSE) and another that minimizes the maximum of the square of the bias and variance, the minmax estimator. This minmax estimator can be identified as a fixed point of a suitable function. For moderate to large sample sizes, the authors argue that all these estimators have the same order of MSE. However, they differ in the contribution of bias to their MSE. The authors also consider their Pareto efficiency in squared bias versus variance space. All the above estimators are non-dominated (i.e., they lie on the Pareto frontier).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modified Maximum Likelihood Estimation in First-Order Autoregressive Moving Average Models with some Non-Normal Residuals

When modeling time series data using autoregressive-moving average processes, it is a common practice to presume that the residuals are normally distributed. However, sometimes we encounter non-normal residuals and asymmetry of data marginal distribution. Despite widespread use of pure autoregressive processes for modeling non-normal time series, the autoregressive-moving average models have le...

متن کامل

Bayesian paradigm for analysing count data in longitudina studies using Poisson-generalized log-gamma model

In analyzing longitudinal data with counted responses, normal distribution is usually used for distribution of the random efffects. However, in some applications random effects may not be normally distributed. Misspecification of this distribution may cause reduction of efficiency of estimators. In this paper, a generalized log-gamma distribution is used for the random effects which includes th...

متن کامل

On Mathematical Characteristics of some Improved Estimators of the Mean and Variance Components in Elliptically Contoured Models

In this paper we treat a general form of location model. It is typically assumed that the error term is distributed according to the law belonging to the class of elliptically contoured distribution. Some sorts of shrinkage estimators of location and scale parameters are proposed and their exact bias and MSE expressions are derived. The performance of the estimators under study are compl...

متن کامل

An Empirical Comparison of Performance of the Unified Approach to Linearization of Variance Estimation after Imputation with Some Other Methods

Imputation is one of the most common methods to reduce item non_response effects. Imputation results in a complete data set, and then it is possible to use naϊve estimators. After using most of common imputation methods, mean and total (imputation estimators) are still unbiased. However their variances (imputation variances) are underestimated by naϊve variance estimators. Sampling mechanism an...

متن کامل

Estimating Variance of the Sample Mean in Two-phase Sampling with Unit Non-response Effect

In sample surveys, we always deal with two types of errors: Sampling error and non-sampling error. One of the most common non-sampling errors is nonresponse. This error happens when some sample units are not observed or viewed but they do not answer some of the questions. The complete prevention of this error is not possible, but it can be significantly reduced. The non-response causes bias and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016